Asymptotic behavior of varying discrete Jacobi-Sobolev orthogonal polynomials
نویسندگان
چکیده
In this contribution we deal with a varying discrete Sobolev inner product involving the Jacobi weight. Our aim is to study the asymptotic properties of the corresponding orthogonal polynomials and the behavior of their zeros. We are interested in Mehler–Heine type formulae because they describe the essential differences from the point of view of the asymptotic behavior between these Sobolev orthogonal polynomials and the Jacobi ones. Moreover, this asymptotic behavior provides an approximation of the zeros of the Sobolev polynomials in terms of the zeros of other well–known special functions. We generalize some results appeared very recently in the literature.
منابع مشابه
Varying discrete Laguerre-Sobolev orthogonal polynomials: Asymptotic behavior and zeros
We consider a varying discrete Sobolev inner product involving the Laguerre weight. Our aim is to study the asymptotic properties of the corresponding orthogonal polynomials and of their zeros. We are interested in Mehler–Heine type formulas because they describe the asymptotic differences between these Sobolev orthogonal polynomials and the classical Laguerre polynomials. Moreover, they give u...
متن کاملAsymptotics for Jacobi-Sobolev orthogonal polynomials associated with non-coherent pairs of measures
Inner products of the type 〈f, g〉S = 〈f, g〉ψ0 + 〈f ′, g〉ψ1, where one of the measures ψ0 or ψ1 is the measure associated with the Jacobi polynomials, are usually referred to as Jacobi-Sobolev inner products. This paper deals with some asymptotic relations for the orthogonal polynomials with respect to a class of Jacobi-Sobolev inner products. The inner products are such that the associated pair...
متن کاملA Cohen Type Inequality for Fourier Expansions of Orthogonal Polynomials with a Non-discrete Jacobi-sobolev Inner Product
Let {Q n (x)}n≥0 denote the sequence of polynomials orthogonal with respect to the non-discrete Sobolev inner product ⟨f, g⟩ = ∫ 1 −1 f(x)g(x)dμα,β(x) + λ ∫ 1 −1 f (x)g(x)dμα+1,β(x) where λ > 0 and dμα,β(x) = (1− x)α(1 + x)βdx with α > −1, β > −1. In this paper we prove a Cohen type inequality for the Fourier expansion in terms of the orthogonal polynomials {Q n (x)}n. Necessary conditions for ...
متن کامل2 6 Ja n 19 96 ESTIMATES FOR JACOBI - SOBOLEV TYPE ORTHOGONAL POLYNOMIALS
Let the Sobolev-type inner product f, g = R f gdµ 0 + R f ′ g ′ dµ 1 with µ 0 = w + M δ c , µ 1 = N δ c where w is the Jacobi weight, c is either 1 or −1 and M, N ≥ 0. We obtain estimates and asymptotic properties on [−1, 1] for the polynomials orthonormal with respect to .,. and their kernels. We also compare these polynomials with Jacobi orthonormal polynomials.
متن کاملRelative Asymptotics for Polynomials Orthogonal with Respect to a Discrete Sobolev Inner Product
We investigate the asymptotic properties of orthogonal polynomials for a class of inner products including the discrete Sobolev inner products 〈h, g〉 = ∫ hg dμ+ ∑m j=1 Nj i=0 Mj,ih (cj)g (cj), where μ is a certain type of complex measure on the real line, and cj are complex numbers in the complement of supp(μ). The Sobolev orthogonal polynomials are compared with the orthogonal polynomials corr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 300 شماره
صفحات -
تاریخ انتشار 2016